07/2015

Mod: XR20CH

Production code: XR20CH

Termostato digital con función de deshielo a parada

INDICE

1.	ADVERTENCIAS	1
2.	DESCRIPCION GENERAL	1
3.	REGULACION	1
4.	PANEL FRONTAL	1
5.	FUNCIÓN MEMORIZACIÓN TEMPERATURA MAX Y MIN	1
6.	EL MENU DE FUNCIONES	1
7.	LISTA DE PARAMETROS	2
8.	ENTRADA DIGITAL (HABILITADA CON P3P = N)	3
9.	LINEA SERIE TTL – PARA SISTEMAS DE MONITORIZACIÓN	3
10.	SALIDA REP - OPCIONAL	3
11.	INSTALACION Y MONTAJE	3
12.	CONEXIONES ELECTRICAS	3
13.	UTILIZACION DE LA LLAVE DE PROGRAMACION "HOT KEY"	3
14.	SEÑALES DE ALARMA	3
15.	DATOS TECNICOS	4
16.	CONEXIONES	4
17.	VALORES POR DEFECTO	4

1. ADVERTENCIAS

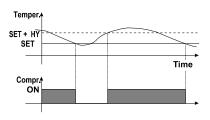
1.1 A POR FAVOR LEA LAS INSTRUCCIONES ANTES DE USAR ESTE MANUAL

- Este manual es parte del producto y debe ser mantenido cerca del instrumento para fácil y rápida referencia.
- El instrumento no debe ser usado para propósitos diferentes de aquellos descritos a continuación. No debe ser usado como un dispositivo de seguridad.
- Verifique los límites de la aplicación antes de proceder.
- Dixell se reserva el derecho a variar la composición de sus propios productos, sin necesidad de comunicarlo al cliente, garantizando de todas formas su idéntica e invariada función.

1.2 PRECAUCIONES DE SEGURIDAD

- Verifique que el voltaje de alimentación sea el correcto antes de conectar el instrumento.
- No lo exponga a agua o humedad: use el instrumento solamente dentro de los límites de operación, evitando cambios súbitos de temperatura con alta humedad atmosférica para prevenir la formación de condensación.
- Precaución: desconecte todas las conexiones eléctricas antes de realizar cualquier tipo de mantenimiento.
- El instrumento jamás debe ser abierto.
- En caso de fallo u operación defectuosa envíe el instrumento de vuelta al distribuidor junto con una descripción detallada del fallo.
- Considere la corriente máxima que puede ser aplicada a cada (ver Datos Técnicos).
- Poner la sonda de modo que no sea alcanzable por el utilizador final.
- Asegúrese que los cables para los sensores, cargas y la alimentación estén separadas y suficientemente alejados entre sí, sin cruzarse ni entrelazarse.
- En caso de aplicaciones en ambientes industriales, el uso de filtros (nuestro mod. FT1) en paralelo con cargas inductivas puede resultar útil.

2. DESCRIPCION GENERAL


El modelo XR20CH, formato 32x74mm, es un termostato apto para aplicaciones en sectores de refrigeración para temperatura normal. Está provisto de una salida de relé. El termostato dispone de dos entradas para sondas NTC o PTC, una para el control termostático, y la segunda, opcional, montada en el conector para HOT KEY, para la gestión de alarma de temperatura del condensador o para la visualización de una temperatura.

La salida HOT KEY permite conectar la unidad, por medio del módulo externo **XJ485-CX**, a una red compatible **ModBUS-RTU** tal como las unidades de monitoreo Dixell de la familia X-WEB y permite programar el controlador a través del teclado de programación "**Hot Key**".

En alternativa a la salida serial, el termostato puede disponer de una salida opcional para el visualizador remoto **X-REP** a través la puerta HOT KEY.

3. REGULACION

3.1 EL COMPRESOR

La regulación se realiza de acuerdo a la temperatura medida por la sonda termostática con un diferencial positivo respecto del punto de intervención (set point): si la temperatura aumenta y alcanza el valor del punto de intervención más el diferencial el compresor arranca para detenerse cuando la temperatura alcanza nuevamente del valor correspondiente al punto de intervención.

En caso de fallo en la sonda termostática el arranque y detención del compresor se calcula conforme lo programado en los parámetros "COn" y "COF".

3.2 DESHIELO

El deshielo se realiza mediante una simple parada del compresor. El parámetro "IdF" controla los intervalos entre los ciclos de deshielo mientras que su duración es controlada por el parámetro "MdF".

4. PANEL FRONTAL

SET: Para visualizar o modificar el set point; en el modo de programación nos selecciona o confirma un valor.

(DES) Para comenzar un deshielo manual.

(ARRIBA): Para visualizar los datos de una posible alarma de temperatura. En modo de programación permite recorrer los códigos de parámetros o aumentar el valor de la variable desplegada.

(ABAJO) Para visualizar los datos de una posible alarma de temperatura. En modo de programación permite recorrer los códigos de parámetros o disminuir el valor de la variable desplecada.

Enciende y apaga el aparato, si el parámetro onF = oFF.

Deshabilitado

COMBINACIONES DE TECLAS

A + X

Bloquea y desbloquea el teclado. Entra en el modo de programación.

SET+S

Sale del modo de programación.

4.1 LEDS

El significado de los leds queda reflejado en la siguiente lista.

LED	MODO	FUNCION
*	Encendido	Compresor/es funcionando.
*	Parpadeando	Habilitado tiempo anticiclos cortos de compresor.
燃	Encendido	Deshielo habilitado
燃	Parpadeando	Drenaje habilitado
(D)	Encendido	Señal de ALARMA
(*)	Encendido	Ciclo continuo funcionando
€CO	Encendido	Ahorro de Energía funcionando.
°C	Encendido	Unidad de medida
°C	Parpadeando	Modo de programación

5. FUNCIÓN MEMORIZACIÓN TEMPERATURA MAX Y MIN

5.1 COMO VER LATEMPERATURA MINIMA

- Presione y suelte la tecla •
- 2. Se visualiza el mensaje "Lo" seguido del valor mínimo de temperatura almacenado.
- 3. Presionando la misma tecla o esperando 5s se restaura la visualización normal.

5.2 COMO VER LA TEMPERATURA MAXIMA

- Presione y suelte la tecla
- Se visualiza el mensaje "Hi" seguido del valor máximo de temperatura almacenado.
- 3. Presionando la misma tecla o esperando 5s se restaura la visualización normal.

5.3 COMO REAJUSTAR LA TEMPERATURA MAX Y MIN ALMACENADA

Para reajustar la temperatura, cuando la max o min temperatura se visualiza

- pulse las teclas ▲ y ▼.
- 2. presione la tecla SET hasta que la etiqueta "rST" empiece a parpadear.

EL MENU DE FUNCIONES

6.1 COMO VERIFICAR EL SET POINT

- Presione y suelte la tecla SET: se visualizará el valor del Set point:
- Para volver a la temperatura, espere 5s o presione la tecla SET de nuevo.

6.2 COMO MODIFICAR EL SETPOINT

- Presione la tecla SET antes de 2s
- Se visualiza el Set point, y el LED °C comienza a parpadear.
- 3) Use las teclas ▲ y ➤ para cambiar el valor.
- Presione la tecla SET para almacenar el nuevo o espere 15s para salir del modo de programación.

6.3 PARA INICIAR UN DESHIELO MANUAL

Pulse la tecla 👯 durante más de 2 segundos y comenzará un deshielo manual.

Instrucciones de manejo

EMERSON

6.4 COMO VARIAR EL VALOR DE LOS PARAMETROS

- 1) Entre en el modo Programación.
- Seleccione el parámetro requerido mediante las teclas SET+ ✓ .(LED°C parpadeando).
- 3) Presione la tecla **SET** para visualizar su valor.
- 4) Use las teclas ▲ y ➤ para cambiar el valor.
- Presione la tecla SET para almacenar el nuevo valor y para y trasladarse al siguiente parámetro.

Para salir: Presione las teclas SET + • o espere 15s sin tocar ninguna tecla.

NOTA: la nueva programación se almacenará incluso si se procede esperando este tiempo.

6.5 ACCESO AL MENÚ SECRETO

El menu secreto incluye todods los parámetros del instrumento.

6.5.1 Como entrar en el menú secreto

- Entre en el modo de programación presionando la teclas Set + → por 3s (LED °C paroadeaando).
- Cuando apareze el parámetro pulse las teclas Set + ▼ por más de 7 sg. Aparecerá la etiqueta Pr2 seguida por el parámetro Hy. ESTA USTED EN MENU SECRETO.
- 3) Seleccione el parámetro requerido.
- 4) Presione la tecla "SET" para visualizar el valor.
- 5) Use las teclas ▲ y ➤ para modificar el valor del parámetro.
- 6) Presione "SET" para almacenar el nuevo valor y pasar al siguiente parámetro.

Para salir: Presione SET + - o espere 15s sin tocar el teclado.

NOTA: El valor se almacena incluso cuando termina el tiempo de expiración (15 sg).

6.5.2 Como remover un parámetro desde el menu secreto al Pr1 y viceversa

Cada parámetro en "MENU SECRETO" puede removerse o ponerse en "Pr1" (nivel usuario) presionando SET + ▼.

En el Menu secreto cuando un parámetro está presente en "Pr1" el LED de punto decimal está encendido

6.6 COMO BLOQUEAR EL TECLADO

- Pulse la teclas ▲ y ➤ presionándolas juntas más de 3 s.
- 2. Se visualizará el mensaje "POF" y el teclado estará bloqueado.
- En esta situación únicamente es posible visualizar el set point o la MAX o Min temperatura almacenada.

6.7 COMO DESBLOQUEAR EL TECLADO

Pulse las teclas ▲ y ▼ presionándolas juntas más de 3s, se visualizará el mensaje "POn" parpadeando.

6.8 CICLO CONTINUO

Cuando un desescarche no está activo, puede activarse pulsando la tecla A por más de 3 sg. El compresor funciona durante el tiempo seleccionado por el parámetro "CCS" como set point. El ciclo puede terminarse volviendo a pulsar la tecla A por 3 sg.

6.9 FUNCION ON/OFF (ENCENDIDO/APAGADO)

Con "onF = oFF", pulsando la tecla ON/OFF el instrumento se apaga (stand by) y se visualiza el mensaje "OFF".

Durante el estado OFF la regulación está deshabilitada..

Pulse nuevamente la tecla para volver encender.

AT. Durante el estado de stand-by las cargas conectadas a los contactos cerrados de los relés estarán activas.

7. LISTA DE PARAMETROS

REGULACION

- Diferencial: (0,1÷25,5°C): Diferencial de Intervención para el set point, siempre positivo. El Compresor Arranca con el Set Point Más el Diferencial (Hy). El Compresor se Para cuando la temperatura sobrepasa el set point.
- Limite mínimo para el set point: (-50 °C÷SET) Fija el mínimo valor aceptable para el set point.
- US Limite Máximo para el set point: (SET÷110°C) Fija el máximo valor aceptable para el set point
- Ot Calibración sonda termostato: (-12.0÷12.0°C) permite ajustar un posible desplazamiento de la sonda.
- P3P Presencia tercera sonda (P3):

n = no presente: el terminal se utiliza como entrada digital;

y = presente: el terminal se utiliza como tercera sonda.

- O3 Calibración tercera sonda (P3): Solo en los modelos habilitados (-12.0÷12.0°C) permite ajustar la compensación de la tercera sonda.
- P4P Presencia cuarta sonda: (n = No presente; y = presente).
- o4 Calibración cuarta sonda: (-12.0÷12.0°C) permite ajustar la compensación de la cuarta sonda.
- Ods Retardo salida activación al arranque: (0÷255 min) Esta función está activada al inicia del arranque del instrumento y deshabilitada cualquier activación de salida durante el periodo de tiempo fijado en el parámetro.
- AC Retardo anti ciclos cortos: (0÷50 min) intervalo entre la parada y siguiente arranque del compresor
- CCt Invalidación del termostato: (0.0÷24.0h; res. 10min). Fija la duración del ciclo continuo. Puede utilizarse también cuando se está cargando la cámara con productos.
- CCS Set point para el ciclo continuo: (-50÷150°C) durante el ciclo continuo se utiliza este set point.

- COn Tiempo compresor ON con fallo de sonda: (0÷255 min) tiempo durante el cual el compresor está operando en caso de fallo de sonda. Con COn=0 el compresor siempre permanecerá apagado.
- COF Tiempo compresor OFF con fallo de sonda: (0÷255 min) tiempo durante el cual el compresor está detenido en caso de fallo de la sonda. Con COF=0 el compresor siempre estará activo.
- CH Tipo de acción: CL = Frio; Ht = Calor.

PANTALLA

- CF Unidad de medida de temperatura: °C = Celsius; °F = Fahrenheit. Cuando la unidad se cambia los valores del SET point y otros valores de parámetros (Hy, LS, US, ccS, ot, oE, o4, dtE, FCt, FSt, ALU, ALL) deben de modificarse.
- rEs Resolución (para °C): (in = 1°C; de = 0,1°C) permite el visualizar las decimas de grado.
- dLy Retardo visualización temperatura (0 ÷20.0m; resol. 10s) Al incrementar la temperatura, el display incrementa el valor desplegado en un grado Celsius o Fahrenheit cada dLy minutos.

DESHIELO

- Idf Intervalo Entre Deshielos: (1÷120h) Determina el intervalo entre el comienzo de dos deshielos.
- MdF Duración Máx del 1^{er} deshielo: (0÷255 min; con 0 el deshielo será excluido) Indica la duración del deshielo.

Cuando P2P = n, (sin sonda de evaporador), determina la duración del deshielo, cuando P2P = y, (sonda de evaporador presente) determina la duración máxima del deshielo

dFd Visualización durante el deshielo:

rt = temperatura real;

it = temperatura leida al comienzo del deshielo;

Set = set point;

dEF = "dEF" etiqueta.

dAd Final de la visualización de la temperatura de deshielo: (0÷255 min) Fija el máximo tiempo entre el final del deshielo y la restauración de la visualización de la temperatura real de la cámera.

ALARMAS DE TEMPERATURA

ALC Configuración de alarma de temperatura:

rE = Alarma de Alta y Baja temperatura relativas al Set Point;

Ab = Alarma de Alta y Baja relativas a la temperatura absoluta.

ALU Fijación alarma de alta temperatura: (ALL÷110°C)

Cuando se alcanza esta temperatura y después del tiempo de retardo **ALd** se activa la alarma HA.

ALL Fijación alarma de baja temperatura: (-50.0 °C÷ALU)

Cuando se alcanza esta temperatura y después del tiempo de retardo **ALd** se activa la alarma I A

- AFH Diferencial recuperación alarmas de temperatura / ventiladores: (0,1÷25,5°C; 1÷45°F) Diferencial para la recuperación de las alarmas de temperatura y las activación de los ventiladores.
- ALd Retardo de la alarma de temperatura: (0÷255 min) intervalo de tiempo entre la activación de una señal de alarma de temperatura y su señalización.
- dAO Retardo de la alarma de temperatura al encendido del instrumento: (0min÷23h 50min) intervalo de tiempo entre la detección de la condicion de alarma de temperatura después del encendido inicial del instrumento y su señalización.

ALARMAS DE TEMPERATURA CONDENSADOR

- AP2 Selección sonda para alarma condensador: nP = no sonda; P1 = sonda termostato; P2 = sonda de fin de deshielo; P3 = sonda configurable; P4 = sonda en el conector Hot Key.
- AL2 Alarma de baja temperatura condensador: (-55÷150°C) Cuando se alcanza esta temperatura y después del tiempo de retardo Ad2se activa la alarma.
- Au2 Alarma de alta temperatura condensador: (-55÷150°C) Cuando se alcanza esta temperatura y después del tiempo de retardo Ad2se activa la alarma.
- AH2 Diferencial recuperación alarmas de temperatura condensador: (0,1÷25,5°C; 1÷45°F) Diferencial para la recuperación de las alarmas de temperatura del condensador.
- Ad2 Retardo de la alarma de temperatura condensador: (0÷255 min) intervalo de tiempo entre la activación de un señal de alarma de temperatura del condensador y su señalización.
- dA2 Retardo de la alarma de temperatura al encendido del condensador: (0min÷23h 50min) intervalo de tiempo entre la detección de la condicion de alarma de temperatura después del encendido inicial del condensador y su señalización.
- bLL Paro compresor para alarma de baja temperatura condensador: n = no, el compresor sigue trabajando; Y = si: paro del compresor con alarma en funcion. En cualquier caso la regulación se reinicia después de transcurrido el tiempo AC al menos.
- AC2 Paro compresor para alarma de alta temperatura condensador: n = no, compresor sigue trabajando; Y = si: paro del compresor con alarma en funcion. En cualquier caso la regulación se reinicia después de transcurrido el tiempo AC al menos.

ENTRADAS DIGITAL

- i1P Polaridad de la entrada digital: oP: la entrada digital se activa abriendo el contacto;
 CL la entrada digital se activa cerrando el contacto.
- itF Configuración de la Entrada Digital: EAL= alarma genérica: se despliega el mensaje "EA"; bAL = alarma grave; PAL = alarma pressostato; dor = switch de puerta;dEF = deshabilitado; AUS = deshabilitado; Htr = inversión acción (caliente - frío); FAn = no seleccionar; ES = Ahorro de Energia.

- did (0÷255 min) Con i1F=EAL o bAL Retardo para la alarma entrada digital: retardo entre la detección de una condición de alarma externa y su señalización.
 - Con i1F=dor: Retardo señalización de puerta abierta.
 - Con i1F=PAL: Tiempo de función switch de presión: intervalo de tiempo para que ocurra un número "nPS" de activaciones.
- nPS Número activaciónes para el switch de presión: es el número de activaciones del switch de presión que deberá producirse durante el período de tiempo did para señalizar el evento de alarma (I2F=PAL).
 - Si se alcanza la activación "npS" en el lapso de tiempo "did", apague y encienda el controlador para reiniciar la regulación.
- odc Control de puerta abierta: Determina el estado del compresor y los ventiladores a puerta abierta: no= ventiladores y compresor normalmente regulan; FAn = ventiladores OFF; CPr = Compresor OFF; F C = Compresor y ventiladores OFF
- rrd Regulación después alarma de puerta abierta: Yes = arranque de la regulación con señal de puerta abierta; no = salidas no se afectan por la alarma doA.
- HES Diferencial de temperatura en ciclo ahorro energía: (+30°C / -30°C / -22÷86°F) incremento o decremento del Set point durante ciclo de ahorro de energía. El Set point utilizado será SET+HES.

DIVERS

- Adr Direción línea serie (0÷244).
- Pbc Selección tipo de sonda: (Ptc = sonda PTC; ntc = sonda NTC).
- onF Función On/Off (stand by) de teclado: n = no habilitado; oFF = habilitado; y= habilitado; ES = no seleccionar.
- dP3 Temperatura sonda auxiliaria: temperatura medida por la sonda auxiliaria.
- dP4 Temperatura cuarta sonda: temperatura medida por la cuarta sonda.
- rSE Set point real: (solo lectura), Set point durante el ciclo de Ahorro de Energía.
- rEL Release software: (solo lectura) Version Software del microprocesor.
- Ptb Tabla parametros: (solo lectura) Código del mapa de parámetros.

B. ENTRADA DIGITAL (HABILITADA CON P3P = N)

El modelo XR20CH dispone de una entrada digital (contacto limpio) y tienes diferentes configuraciones posibles que se pueden definir a través del parámetro "i1F".

8.1 ENTRADA MICROPUERTA (i1F=dor)

Señaliza la abertura de la puerta de la cámera. Cuando la puerta se abre el compresor se regula en base al valor del parámetro "odc" :

no, Fan = normal;

CPr; **F_C** = compresor OFF;

Durante el tiempo que la puerta está abierta, y tras el retardo transcurrido en el parámetro "did", la señal de alarma se activa y el display muestra el mensaje "dA" y la regulación se reinicia si rtr = y. La alarma termina tan pronto como la entrada digital queda deshabilitada. Durante este tiempo las alarmas de alta y baja temperatura quedan deshabilitadas.

8.2 ENTRADA CONFIGURABLE - ALARMA GENERICA (i1F=EAL)

Tan pronto como se activa la entrada digital, el XR espera durante el intervalo "did" , transcurrido este intervalo en el display aparece la alarma "EA", las salidas no cambian. La alarma finaliza en el momento en el que la entrada digital queda desactivada.

8.3 ENTRADA CONFIGURABLE - MODO ALARMA SERIA (i1F= bAL)

Cuando se activa la entrada digital, el XR espera durante el intervalo "did", transcurrido este intervalo en el display aparece la alarma "CA", las salidas relé serán deshabilitadas. La alarma finaliza en el momento en el que la entrada digital queda desactivada.

8.4 INTERVENCIÓN PRESSOSTATO (i1F=PAL)

Si en el intervalo de tiempo establecido por parámetro "did" es alcanzado un número de intervenciones pressostato igual al parámetro "nPS" dispara la alarma. Es visualizado el mensaje "CA", es apagado el compresor y suspendida la regulación.

Para retomar el funcionamiento normal se tiene que apagar el instrumento y reavivarlo. Cuando la entrada es activa el compresor siempre es apagado.

8.5 ENTRADA CONFIGURABLE - COMIENZO DE DESHIELO (i1F=dFr)

Realiza un deshielo si las condiciones son adecuadas. Después del deshielo haya terminado, la regulación normal se restablecerá solo si la entrada digital se deshabilita, de otro modo el instrumento debe esperar hasta el final del intervalo "MdF".

8.6 INTERVENCIÓN ACCIÓN DEL CONTROLADOR: FRÍO-CALIENTE (i1F=Htr)

Hasta que la entrada digital es activa, es invertida en caliente la acción del revisor por frío y viceversa.

8.7 ENTRADA CONFIGURABLE - AHORRO DE ENERGIA (i1F=ES)

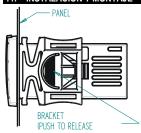
La función de ahorro de energía permite el cambio del valor del Set point , pasando a un valor Set + HES. Esta función permanece activa hasta la desactivación de la entrada digital.

8.8 POLARIDAD ENTRADA DIGITAL

La polaridad de la entrada depende del parámetro "I1P"

- CL : La entrada digital se activa cerrando el contacto;
- OP: La entrada digital se activa abriendo el contacto.

9. LINEA SERIE TTL - PARA SISTEMAS DE MONITORIZACIÓN


La linea serie TTL, disponible a través del conector HOT KEY, permite, mediante un módulo intermedio TTL/RS485 **XJ485-CX**, el conectar el instrumento a una red compatible **ModBUS-RTU** como el sistema de monitorización dIXEL X-WEB500.

Este mismo conector puede usarse para cargar o descargar la lista de parámetros a través de una llave "HOT KEY".

10. SALIDA REP - OPCIONAL

El instrumeno puede ser conectado opcionalmente al X-REP, a través del conector HOT KEY. La salida X-REP **EXCLUYE** la conexión serial.

1. INSTALACION Y MONTAJE

Los instrumentos deben ser montados en panel, en una perforación de 29x71 mm, y fijados usando las fijaciones que se acompañan.

La temperatura ambiente en torno al instrumento debe estar en el rango 0÷60 °C para una correcta operación del aparato. Evite lugares sujetos a fuertes vibraciones, gases corrosivos, suciedad excesiva o humedad. Las mismas recomendaciones se aplican a las sondas. Déjese circular aire a través de las rendijas de enfriamiento.

12. CONEXIONES ELECTRICAS

El instrumento está provisto de conector terminal con tornillos para la conexión de cables con sección superior a 2,5 mm² para las entradas digitales. Deben de instalarse cables resistentes al calor. Antes de conectar cables verifique que la alimentación cumple con los requerimientos del instrumento. Separe los cables de las entradas de aquellos de alimentación, de las salidas y las conexiones de potencia. No exceda la corriente máxima permitida para cada relé; en caso de cargas mayores deben usarse relés externos.

12.1 CONEXION DE SONDAS

La sonda se debe montar con el bulbo hacia arriba para prevenir daños debido a filtraciones casuales de líquido. Se recomienda poner la **sonda del termostato** lejos de flujos de aire a fin de medir correctamente la temperatura promedio de la cámara.

13. UTILIZACION DE LA LLAVE DE PROGRAMACION "HOT KEY"

13.1 DESCARGA (DESDE LA "HOT KEY" AL INSTRUMENTO)

- Apague el instrumento desde la tecla ON/OFF, inserte la "Hot Key" y luego vuelva a encender el instrumento con ON.
- Automáticamente la lista de parámetros de la "Hot Key" se descargara a la memoria del instrumento, el mensaje "DoL" parpadeara . Después de 10s el instrumento funcionará con los nuevos parámetros.
- 3. Apague el instrumento, retire "Hot Key y vuelva a encender.

Al final de fase de transmisión de datos, apareceran las indicaciones siguientes:

"end " por una correcta programación. El aparato empieza a funcionar normalmente con la nueva programación.

"err" por una programación errónea. En este caso, apague la unidad y vuelva a conectarla si desea reiniciar el proceso de descarga una vez más, o quite la "Hot key" para cancelar la operación.

13.2 CARGA (DESDE EL INSTRUMENTO A LA "HOT KEY")

- 1. Apague el instrumento desde la tecla ON/OFF, y luego vuelva a encenderlo con ON.
- Cuando el instrumento está encendido, inserte la "Hot key" y pulse la tecla .
 Aparecerá el mensaje "uPL".
- 3. Pulse la tecla "SET" para comenzar la carga. El mensaje "uPL" parpadeará.
- 4. Apague el aparato, retire la "Hot Key" y vuelva a conectar.

Al final de fase de transmisión de datos, apareceran las indicaciones siguientes:

"end " por una correcta programación.

"err" por una programación errónea. En este caso, pulse la tecla SET si desea reiniciar el proceso una vez más, o quite la "Hot key" para cancelar la operación.

14. SEÑALES DE ALARMA Mens. Causa Fallo sonda termostato Salida de Alarma ON: salida Compresor de acuerdo a los parámetros "COn" y "COF". Relé Alarma ON; Otras salidas "P3" Fallo tercera sonda sin cambios. "P4" Fallo cuarta sonda Salidas sin cambios "LA Alarma mínima temperatura Otras salidas sin cambios. Alarma máxima temperatura Otras salidas sin cambios. "HA2" Alarma máxima temperatura condensador Depende del parámetro "Ac2" "I A2" Alarma mínima temperatura condensador Depende del parámetro "bLL Alarma externa Otras salida sin cambios Alarma externa (i1F=bAL) "CA" Cargas apagadas "dA" Puerta abierta Compresor y ventilador reinician Alarma pressostato (i1F=PAL) 'CA' Cargas apagadas.

14.1 RECUPERACION DE ALARMAS

Alarmas de sonda : "P1" (fallo sonda1), "P2" (fallo sonda2), "P4" (fallo sonda4) la alarma cesa 10s después del restablecimiento del normal funcionamiento. Comprueve las conexiones antes de cambiar la sonda.

Las alarmas de temperatura "HA", "LA", "HA2" y "LA2", cesarán automaticamente cuando la temperatura vuelve a los valores normales de uso o cuando empieza un desescarche.

Alarma "EA" y "CA" se recupera apenas se deshabilita el ingreso digital.

Si la E.D. está configurada como presóstato (i1F=bAL) es necessario apagar manualmente el aparato para restablecerlo.

14.2	14.2 OTROS SEÑALES	
Pon	Desbloque del teclado	
PoF	Bloque del teclado	
noP	En modo de programación: ningún parámetro en Pr1	
	En display o en dP2, dP3, dP4: sonda deshabilitada.	
noA	Ninúna alarma almacenada	

15. DATOS TECNICOS

Envolvente: ABS auto-extinguible.

Caja: XR20CH frontal 38x80 mm; profundidad 62mm.

Montaje: XR20CH en panel con un espacio de 71x29 mm.

Protección: IP20.

Protección Frontal: XR20CH IP65.

Conexiones: Terminal con tornillos. Cables ≤2,5 mm².

Alimentación: segundo modelo 12Vac/dc ±10%; 24Vac/dc ±10%; 230Vac ±10% 50/60Hz,

 $110 \text{Vac} \pm \! 10\%$ 50/60Hz.

Potencia absorbida: máximo 3VA. Display: 3 digitos, LED rojos, altura 14,2 mm. Entradas: hasta 4 sondas NTC o PTC. Entrada digital: libre voltaje.

Relés de salidas Compresor: relè SPDT 8(3) A, 250Vac o 20(8)A 250Vac.

Zumbador: opcional.

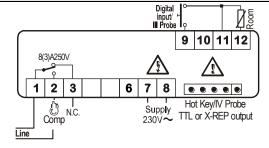
Almacenamiento de datos: en memoria (EEPROM) no volatil.

Tipo de acción: 1B. Grado de polución: 2. Software clase: A.

Tension impulsiva nominal: 2500V. Categoría de sobretensión: II;

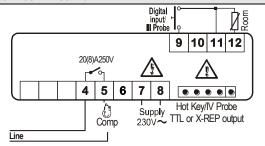
Temperatura de operación: $0 \div 60$ °C. Temperatura de almacenamiento: $-25 \div 60$ °C. Humedad relativa: $20 \div 85\%$ (no condensada).

Rango de medida y regulación: Sonda PTC: -50÷150°C; Sonda NTC: -40÷110°C.


Resolución: 0,1°C:-19.9÷99.9 o 1 °F.

Precisión (temperatura ambiente 25°C): ±0,1 °C ±1digito.

16. CONEXIONES


Salida X-REP excluye la TTL y está habilitada solo para los códigos: XR20CH- xx2xx, XR20CH -xx3xx.

16.1 XR20CH - COMPRESOR 8A

9-40Vdc: conectar l'alimentación a los terminales 7 y 8.
12Vac/dc: conectar l'alimentación a los terminales 7 y 8.
24Vac/dc: conectar l'alimentación a los terminales 7 y 8.
120Vac: conectar l'alimentación a los terminales 7 y 8.

16.2 XR20CH - COMPRESOR 20A

9-40Vdc: conectar l'alimentación a los terminales 7 y 8. 12Vac/dc: conectar l'alimentación a los terminales 7 y 8. 24Vac/dc: conectar l'alimentación a los terminales 7 y 8. 120Vac: conectar l'alimentación a los terminales 7 y 8.

17. VALORES POR DEFECTO						
Etiq.	Descripción	Rango	Valor	Niv.		
SEt	Set point	LS - US	3.0			
Ну	Diferencial	(0,1°C÷25,5°C) (1°F÷45°F)	2.0	Pr1		
LS	Set point mínimo	(-55,0°C÷SET) (- 67°F÷SET)	-50.0	Pr2		
US	Set point máximo	(SET÷150,0°C) (SET÷302°F)	110	Pr2		
ot	Calibración sonda termostato (sonda 1)	(-12,0÷12,0°C) (-21÷21°F)	0.0	Pr1		
P3P	Presencia tercera sonda	n - Y	n	Pr2		
о3	Calibración tercera sonda	(-12,0÷12,0°C) (-21÷21°F)	0	Pr2		
P4P	Presencia cuarta sonda	n - Y	n	Pr2		
04	Calibración cuarta sonda	(-12,0÷12,0°C) (-21÷21°F)	0	Pr2		
odS	Retardo activacion salida relé al arranque	0÷255 (min.)	0	Pr2		

Etiq.	Descripción	Rango	Valor	Niv.
AC	Retardo anti ciclos cortos	0÷50 (min.)	1	Pr1
CCt	Duración del ciclo continuo	0÷24.0h	0.0	Pr2
ccs	Set point ciclo continuo	(-55.0÷150,0°C) (-67÷302°F)	3	Pr2
Con	Tiempo Compr. ON con fallo de sonda	0÷255 (min.)	15	Pr2
CoF	Tiempo Compr. OFF con fallo de sonda	0÷255 (min.)	30	Pr2
СН	Tipo de acción	CL÷Ht	cL	Pr1
CF	Unidad medida de temperatura	°C - °F	°C	Pr2
rES	Resolución (entero/punto decimal)	dE – in	dE	Pr1
dLy	Retardo visualización temperatura	0 ÷ 20M0 (120) (10 sec.)	0	Pr2
ldF	Intervalo entre deshielos	0÷120 (ore)	8	Pr1
MdF	Duración Máx del 1er deshielo	0÷255 (min.)	20	Pr1
dFd	Visualización durante el deshielo	rt - it - SEt- dEF	it	Pr2
dAd	Retardo MAX visualización después deshielo	0÷255 (min.)	30	Pr2
ALC	Configuración alarma temperatura: relativa/ absoluta.	rE – Ab	Ab	Pr2
ALU	Alarma MAX temperatura	0,0÷50,0°C rel. o ALL÷150°C 0÷90°F rel. o ALL÷302°F	110	Pr1
ALL	Alarma MIN temperatura	0.0÷50°C rel. o -55÷ALU; 0°÷90°F rel. o -67÷ALU°F	-50.0	Pr1
AFH	Diferencial alarma temperatura	(0,1°C÷25,5°C) (1°F÷45°F)	1	Pr2
ALd	Retardo alarma temperatura	0÷255 (min.)	15	Pr2
dAo	Retardo alarma temperatura al arranque	0÷24.0h	1.3	Pr2
AP2	Selección sonda para alarma condensador	nP; P1; P2; P3; P4	P4	Pr2
AL2	Alarma MIN temperatura condensador	(-55 ÷ 150°C) (-67÷ 302°F)	-40	Pr2
AU2	Alarma MAX temperatura condensador	(-55 ÷ 150°C) (-67÷ 302°F)	110	Pr2
AH2	Differenziale per allarmi di temperatura 2	[0,1°C ÷ 25,5°C] [1°F ÷ 45°F]	5	Pr2
Ad2	Retardo alarma temperatura condensador	0 ÷ 254 (min.) , 255=nU	15	Pr2
dA2	Retardo de la alarma de temperatura al encendido del condensador	0 ÷ 24H0(144)	1,3	Pr2
bLL	Paro compresor para alarma de baja temperatura condensador	n(0) - Y(1)	n	Pr2
400	Paro compresor para alarma de alta	7(0) \(\(\lambda \) \(\lambda \)	n	Pr2
AC2	temperatura condensador Polaridad entrada digital	n(0) - Y(1)		Pr1
i1P i1F	Configuración entradas digital	OP – CL EAL - bAL - PAL- dor- dEF-	cL	Pfl
		AUS- Htr - FAn – ES	dor	Pr1
did	Retardo para la alarma entrada digital	0÷255 (min.)	15	Pr1
nPS	Número activaciónes para la función presóstato	0÷15	15	Pr2
OdC	Control de puerta abierta	no - FAn - CP - F-C	no	Pr2
rrd	Regulación después alarma de puerta abierta	n – Y	у	Pr2
HES	Diferencial de temperatura en ciclo ahorro energía	(-30°C÷30°C) (- 54°F÷54°F)	0	Pr2
Adr	Direción línea serie	0÷247	1	Pr2
PbC	Selección de sonda	PtC – ntC	ntc	Pr1
onF	Función tecla on/off	nu, oFF; ES	nu	Pr2
dP3 ¹	Visualización sonda P3	(valor sonda)		Pr1
dP4	Visualización sonda condensador (P4)	(valor sonda)		Pr1
rSE	Set point real	valor set		Pr2
rEL	Versión del Software (solo lectura)	solo lectura		Pr2
Ptb	Mapa de codigos	solo lectura		Pr2

¹ Solo en los modelos XR20CH–xx**2**xx, XR20CH–xx**3**xx...

Dixell S.r.l. - 32010 Pieve d'Alpago (BL) ITALY - Z.l. Via dell'Industria, 27 Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - www.dixell.com - dixell@emerson.com